The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction.
نویسندگان
چکیده
Wallemia (Wallemiales, Wallemiomycetes) is a genus of xerophilic Fungi of uncertain phylogenetic position within Basidiomycota. Most commonly found as food contaminants, species of Wallemia have also been isolated from hypersaline environments. The ability to tolerate environments with reduced water activity is rare in Basidiomycota. We sequenced the genome of W. sebi in order to understand its adaptations for surviving in osmotically challenging environments, and we performed phylogenomic and ultrastructural analyses to address its systematic placement and reproductive biology. W. sebi has a compact genome (9.8 Mb), with few repeats and the largest fraction of genes with functional domains compared with other Basidiomycota. We applied several approaches to searching for osmotic stress-related proteins. In silico analyses identified 93 putative osmotic stress proteins; homology searches showed the HOG (High Osmolarity Glycerol) pathway to be mostly conserved. Despite the seemingly reduced genome, several gene family expansions and a high number of transporters (549) were found that also provide clues to the ability of W. sebi to colonize harsh environments. Phylogenetic analyses of a 71-protein dataset support the position of Wallemia as the earliest diverging lineage of Agaricomycotina, which is confirmed by septal pore ultrastructure that shows the septal pore apparatus as a variant of the Tremella-type. Mating type gene homologs were identified although we found no evidence of meiosis during conidiogenesis, suggesting there may be aspects of the life cycle of W. sebi that remain cryptic.
منابع مشابه
Application of the Phylogenetic Species Concept to Wallemia sebi from House Dust and Indoor Air Revealed by Multi-Locus Genealogical Concordance
A worldwide survey of Wallemia occurring in house dust and indoor air was conducted. The isolated strains were identified as W. sebi and W. muriae. Previous studies suggested that the W. sebi phylogenetic clade contained cryptic species but conclusive evidence was lacking because only the internal transcribed spacer (ITS) marker was analyzed. The ITS and four protein-coding genes (MCM7, RPB1, R...
متن کاملA Taxonomic Revision of the Wallemia sebi Species Complex
Wallemia sebi is a xerophilic food- and air-borne fungus. The name has been used for strains that prevail in cold, temperate and tropical climates. In this study, multi-locus phylogenetic analyses, using the internal transcribed spacer (ITS) regions, DNA replication licensing factor (MCM7), pre-rRNA processing protein (TSR1), RNA polymerase II largest subunit (RPB1), RNA polymerase II second la...
متن کاملCorrection: Application of the Phylogenetic Species Concept to Wallemia sebi from House Dust and Indoor Air Revealed by Multi-Locus Genealogical Concordance
open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملSubcutaneous phaeohyphomycosis caused by Wallemia sebi in an immunocompetent host.
We report a case of subcutaneous phaeohyphomycosis due to Wallemia sebi in a 43-year-old-female, the first case reported since 1950. The lesion presented as a nonhealing ulcer on the dorsum of the left foot. Diagnosis was based on histological demonstration of the fungus and its recovery in culture.
متن کاملInfluence of solute, pH, and incubation temperature on recovery of heat-stressed Wallemia sebi conidia.
The influences of glucose, sorbitol, and NaCl in a basal enumeration medium at water activities (aw) from 0.82 to 0.97 on colony formation by sublethally heat-stressed Wallemia sebi conidia were determined. Over this aw range, glucose and sorbitol had similar effects on recovery, whereas at an aw of 0.82 to 0.92, NaCl had a detrimental effect. Colony diameters were generally largest on media co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fungal genetics and biology : FG & B
دوره 49 3 شماره
صفحات -
تاریخ انتشار 2012